
IGScript: An Interaction Grammar for Scientific Data
Presentation

Richen Liu
School of CEI/AI, Nanjing Normal University

Nanjing, P.R.China
richen@pku.edu.cn

Min Gao
School of CEI/AI, Nanjing Normal University

P.R.China
19170326@stu.njnu.edu.cn

Shunlong Ye
School of CEI/AI, Nanjing Normal University

P.R.China
19180306@stu.njnu.edu.cn

Jiang Zhang
School of Electronics Engineering and Computer

Science, Peking University
Beijing, P.R.China

ABSTRACT

Most of the existing scientific visualizations toward interpre-
tive grammar aim to enhance customizability in either the
computation stage or the rendering stage or both, while few
approaches focus on the data presentation stage. Besides,
most of these approaches leverage the existing components
from the general-purpose programming languages (GPLs) in-
stead of developing a standalone compiler, which pose a great
challenge about learning curves for the domain experts who
have limited knowledge about programming. In this paper,
we propose IGScript, a novel script-based interaction gram-
mar tool, to help build scientific data presentation anima-
tions for communication. We design a dual-space interface
and a compiler which converts natural language-like gram-
mar statements or scripts into a data story animation to
make an interactive customization on script-driven data pre-
sentations, and then develop a code generator (decompiler)
to translate the interactive data exploration animations back
into script codes to achieve statement parameters. IGScript
makes the presentation animations editable, e.g., it allows to
cut, copy, paste, append, or even delete some animation clips.
We demonstrate the usability, customizability, and flexibili-
ty of IGScript by a user study, four case studies conducted
by using four types of commonly-used scientific data, and
performance evaluations.

CCS CONCEPTS

• Human-centered computing → Scientific visualiza-
tion; Geographic visualization; Systems and tools for
interaction design.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

CHI ’21, May 8–13, 2021, Yokohama, Japan
c⃝ 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445535

KEYWORDS

data presentation, interaction grammar, scientific visualiza-
tion

ACM Reference Format:
Richen Liu, Min Gao, Shunlong Ye, and Jiang Zhang. 2021. IGScrip-

t: An Interaction Grammar for Scientific Data Presentation. In
CHI Conference on Human Factors in Computing Systems (CHI
’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3411764.3445535

1 INTRODUCTION

Interpretive grammars are widely used in the academia and
industry to solve different aspects of problems in academic
research and industrial engineering [25, 26]. To mitigate the
programming difficulties of GPLs while maintaining precise
expression in some exact applications, interpretive grammar
that presents a higher level of abstraction than low-level in-
terfaces are used. These tools trade generality for ease of use
and conciseness, while providing much more flexibility than
general interfaces [42]. Interpretive grammar tools consist of
interpretive libraries and interpretive languages (or script-
s). The distinctions between the languages and libraries are
sometimes fuzzy [32]. For example, Protovis [10] is built as li-
braries, but sometimes described as languages. The interpre-
tive libraries are usually embedded in a host language, i.e., an
existing GPL, to leverage existing application program inter-
faces (APIs). The syntactic features from the original GPL
and corresponding language infrastructure could be reused
for concrete realization, which might cause some platform
dependence issues. The development of an interpretive lan-
guage could be considered as the creation of a brand-new
language [38]. It allows the developers to define their own
lexical analyzer and semantic analyzer [50], which is wide-
ly acknowledged that the development is tedious due to its
independence on existing GPLs.

Most existing scientific visualizations toward interpretive
grammars enhance the customizability in either the compu-
tation stage [17, 42], the rendering stage [12, 39, 44], or
their combination [32]. However, few approaches focus on
the stages of interactive data presentations or data story
building. We further narrow down the definition of data pre-
sentation in this paper to be a series of controls over virtual

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

cameras. Thus the term “data presentation” in this paper
consists of three aspects: (a) defining what important da-
ta feature the cameras can see; (b) changing cameras view-
points to view data from different perspectives and scales;
(c) selecting important viewports to present data.

Building data stories and maintaining precise expressions
on the presentations are important because of the follow-
ing reasons. First, achieving precise control when generating
gentle and elegant transitions is difficult for people in human-
computer interactions. For example, rotating the Earth man-
ually by 10 longitudes per second evenly to generate a data
story through recording a demo video for a science talk is
highly impossible in a global map-based data visualization.
A slight transition in shot changes between regions of interest
(ROIs), similar to the style in film photography, is also diffi-
cult to achieve. Second, it often takes a long time in trial-and-
error explorations which are of little use to get significant
cases when generating a scientific storytelling demo through
traditional graphical user interfaces (GUIs). Third, support-
ing some complex application-specific presentations by using
traditional GUI interfaces is challenging. We take an exam-
ple in 3-D box queries in diffusion tensor imaging (DTI) fiber
data. Suppose that four query boxes A, B, C, and D could be
defined as follows: A is specified to query the ocean pathline
clusters (or DTI fiber tracts) passing through the eastern
Pacific (or inner capsule), B is for those that pass through
Hawaii (or corpus callosum), C is for the northern Pacific
(or brain stem), and D is for the southern Pacific (or outer
capsule). Given a query such as (A∩B)∪ (C ∪D)∪ (Ā∪C),
it is difficult to define this query by the traditional inter-
faces unless enumerating all the box entities and operators
by widgets on the traditional GUIs. If we add more query
boxes, such as E, F, and G, then the new widgets should be
added to the GUI in run time. However, the flexible, legi-
ble, and unambiguous expression that defines arbitrary logic
combinations of queries is simple to use and edit.

Most of these existing approaches leverage the existing
components from the general-purpose programming languages
(GPLs) instead of developing a standalone compiler, which
pose a great challenge about the steep learning curves for the
domain experts who have limited knowledge about program-
ming. According to the feedback from the domain experts,
they think most of the current GPL codes are difficult for
them to write and edit. They also suggest that it would be
better if the identifiers and parameters can be redefined us-
ing their technical terms or closer to natural languages. How-
ever, a standalone compiler is flexible enough to allow us to
customize the identifiers, statement structures and even code
styles for different domains. Therefore, we propose IGScrip-
t, a novel script-based interaction grammar tool based on a
light-weight compiler, to help build scientific data presen-
tation for communication. We abstract and summarize the
data presentation functions into script grammars. Then, we
develop a special-purpose compiler to build natural language-
like script codes. This compiler enables to build narrative
story for 2-D scalar field data, 3-D scalar field data, vector

field data, and DTI data, which are four frequently-used gen-
eral data types in scientific visualization. In this paper, we
mainly address the following issues in the design of IGScript:

Code generator and parameter assignments via a
dual-space view: We develop a script code generator (or
a decompiler) to translate the interactive scientific data ex-
plorations into script codes to achieve statement parameters,
and design a compiler to convert natural language-like script-
s into presentation story to make a precise customization.
We also design a dual-space linked view, which consists of
a visualization space view and a coding space view, to pro-
vide visual steering and visual feedback for code generations.
IGScript enables to cut, copy, paste, append script codes
through code editing in coding space, or even delete some
trial-and-error codes which are of little use to get new dis-
coveries or significant cases.

General-purpose design: The flexible, legible, and un-
ambiguous script grammar of IGScript supports most general-
purpose data presentations, which are summarized and ab-
stracted into four types of functions, i.e., versatile data load-
ing, object transformations, animation controls, and scene
switching of the camera. The transitional scene switching
across ROIs follows the scheme of script-driven film photog-
raphy.

Application-specific design: We also design grammars
to solve some application-specific data presentation issues
in scientific data visualization. It involves clustering-driven
camera splitting/merging to support overview-to-details vec-
tor field data exploration, origin-destination (OD) [27, 29, 51,
52] query-driven clustering to support the group tracking
explorations for vector field data and DTI fiber data, 3-D
box queries [1, 14, 31, 49] and their set operations (inter-
section, union, complement) to query DTI fiber tracts. The
application-specific cases in this paper are collected from the
above-mentioned literature and the domain requirements.

2 BACKGROUND AND RELATED
WORK

Many scientific visualizations toward interpretive grammars
focus on the customizations or function definitions in either
the rendering stage or the computation stage or both. For ex-
ample, many of them focus on the rendering stage, and most
of which are implemented based on OpenGL Shading Lan-
guage (GLSL) [12, 39, 44]. Specifically, an octree-based vi-
sual composer [41], a network-based visual selector [39], and
a shader block combiner [44] are designed to select GLSL
shader components at the rendering stage to support vol-
ume rendering, respectively. Besides, there are some inter-
pretive grammar approaches to enhance the customization in
the computation stage. For example, a novel domain-specific
tool named ViSlang [42] is presented to perform volume da-
ta processing and querying. A framework named Vivaldi [17]
is proposed to build codes from volume rendering to image
segmentation by parallel computation. Another tool named
Diderot [32] is proposed to bridge the semantic gap between
the mathematical computation and how they look in source

IGScript: An Interaction Grammar for Scientific Data Presentation CHI ’21, May 8–13, 2021, Yokohama, Japan

codes. Some novel grammar tools like Reactive Vega [46],
Vega-Lite [45] and GoTree [33] are designed to enable rapid
specification of information visualizations (bar charts, line
charts, scalar plots and tree) by using JSON (JavaScript
Object Notation) syntax. Besides, we notice that there is a
series of approaches using Shape Grammar [30, 35] to de-
fine the quadric surface and cuboid shapes of drawn objects
(e.g., oil wells, chimneys, buildings, etc.) in order to make a
balance between standalone grammars and nested libraries.
Overall, few scientific visualizations focus in interactive cus-
tomizations in data presentation stage.

Furthermore, we have summarized the related interpre-
tive grammar work from different viewpoints according to a
recent survey [48]: interpretive grammars can be classified in-
to external interpretive grammars and internal interpretive
grammars based on whether the grammar depends on anoth-
er host language. Many papers classified by the three crite-
ria overlap each other to some extent. We, therefore, review
the related work according to the latter two classification
criteria briefly. The second classification criterion is to cat-
egorize the interpretive grammars into textual interpretive
grammars (Tex) [4, 8] and graphical interpretive grammars
(Gra) [34, 40] according to the symbols of the libraries/script-
s. The third classification criterion classifies the interpretive
grammars according to the exact functions like modeling or
visual analytics, e.g., DSVL [2, 24], DSML [20, 47], and D-
SEL [5, 21]. IGScript is more like a DSVL work while it fo-
cuses on grammars for interactive data presentation instead
of visualization. It enables users to customize data story an-
imations in a dual-view on important data features, data
queries, and visual tracking.

2.1 External Interpretive Grammars

External interpretive grammars are mainly implemented on
standalone languages, thus most of the external interpretive
grammars are script languages instead of libraries. Few ex-
ternal grammar approaches aim to solve visualization prob-
lems toward complex platform development due to its in-
dependence on existing GPLs [38]. They need to build their
own lexical analyzer and semantic analyzer [50]. However, ex-
ternal interpretive grammars allow design freedom [11, 48].
Barringer et al. develop several external interpretive gram-
mars/languages for trace analysis, e.g., EAGLE [6], HAWK [19],
RULER [9], and LOGSCOPE [7]. To alleviate the indepen-
dence problem, Cosentino et al. propose a prototype-tool
named DSLit [18]. We can find that almost all of the existing
external grammar methods aim to solve the domain-specific
engineering problems or satisfy the industry requirements.

2.2 Internal Interpretive Grammars

Internal interpretive grammars are often designed to embed
in a host language (i.e., an existing GPL), and they are of-
ten implemented as libraries in order to employ the existing
functions defined by the GPLs [38]. Most of the existing vi-
sualization approaches toward interpretive grammars can be
categorized into internal interpretive grammars because they

can leverage the existing components from the GPLs. Howev-
er, selecting an appropriate host language is significant [43]
in internal grammar designs. GPLs offer more flexibility for
the construction of internal interpretive grammars [23].

The high-level abstractions of grammars [37] are designed
by reusing the host language features. The languages like
Python [17], Haskell [22], Ruby [26], and C/C++ [3, 25]
are seemingly ideal for the host languages of internal inter-
pretive codes. In addition, scripting languages and dynamic
languages are also good options [8, 23] due to their syntactic
flexibility and straightforward adaption [48].

2.3 Relationships

The relationships between the existing interpretive gram-
mars and the proposed IGScript can be summarized as fol-
lows:

First, IGScript exerts the advantages of standalone com-
piler and script-like grammar. It is independent on the host
languages and thus decreases the learning curves of them.
The IGScript grammars are simple and can be easy to follow
the style of natural language-like grammars, which is of sig-
nificance to the domain experts who have limited knowledge
about programming. Many existing visualization approaches
toward interpretive grammars leverage the existing compo-
nents from the GPLs or host languages instead of developing
a standalone compiler.

Second, most of the existing visualization approaches to-
ward interpretive grammars enhance the customizability in
either the computation stage or the rendering stage or both
of them, few focusing on interactive data presentation stage
because most of them focus on defining codes in parallel com-
putation or rendering. However, it is of great significance to
customize the interactive data presentations and maintain
the precise expression. The design of dual-space view en-
ables users easily to define ROIs and get visual feedback to
customize the presentation animations. Besides, the general-
purpose design enables users to generate script-driven visual
traversals across multiple ROIs and the presentation anima-
tion on camera splitting/merging.

Third, the carefully-designed grammars of IGScript make
all presentation animations (demo videos) editable because
all the exploration steps will be bound and linked to different
script codes in the dual-space linked views. It enables users
to cut, copy, paste, append the animation videos through
script editing in coding space, or even delete some trial-and-
error explorations which are of little use to get new discov-
eries or significant cases.

3 SCRIPT CODE GENERATOR AND
GRAMMAR DESIGN

We describe the design goals, design considerations and the
design details of IGScript in this section. The design details
consist of the designs of a light-weight compiler, a linked
dual-space view, general-purpose grammars and application-
specific grammars.

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

3.1 Design Goals and Considerations

The design goals of IGScript are listed as follows:

• G1: help users define ROIs via coarse-grained and fine-
grained interactions

• G2: form a presentation animation by recording visual
traversals or visual tracking across ROIs

• G3: enable users to edit the animation clips of a data
story in a semantic space

First, the ROIs can be defined through a multi-scale s-
trategy, i.e., in a coarse-grained scale and a fine-grained s-
cale (G1). We design a dual-space view, i.e., a visualization
space view and a coding space view, to provide visual steer-
ing and visual feedback for ROI definitions. Users are allowed
to place and move an ROI box in the visualization space by
coarse-grained tuning and then adjust its position slightly
(fine-grained) in the coding space.

Second, the presentation animations are significant for do-
main experts to conduct domain experts’ discussion, which
can be recorded by visual traversals or visual tracking across
ROIs (G2). We develop a script code generator to translate
the interactive explorations into script codes to achieve state-
ment parameters, and design a compiler to convert natural
language-like grammar statements (scripts) into scientific da-
ta explorations to make a precise control on interactive ex-
plorations.

Third, the grammars should be designed intuitively and
easily to be edited by users who have limited experience
in programming. All animation clips of the data presenta-
tion story can be edited by users in an intuitive interface
(G3). The grammars consist of general-purpose grammars
(G2) and application-specific grammars (G2).

We focus on four frequently-used general types of scientific
data, i.e., 2-D scalar field data, 3-D scalar field data, vector
field data, and DTI data. According to the book “The Visu-
alization Handbook” by Charles Hansen and Chris R. John-
son [28] and the tensor-based data type definitions by Tim
McGraw [36], the categories of data type (type of attribute
data) include 2-D/3D scalar field data (0th order tensors),
vector field data (1st order tensors) and tensor field data
including DTI data (higher order tensors).

3.2 Script Code Generating Based on
Dual-Space Linked Views

We develop a script code generator which consists of a pa-
rameter assignment module to translate the interactive data
presentations into script codes and then achieve statement
parameters (G1). All general data presentations like rota-
tion, translation, scaling, etc., can be translated into script
codes by using quaternion matrices, thus the code generator
seems more like a decompiler. For the demonstration about
the code generator, please refer to the supplementary video
of the paper.

Furthermore, in order to generate a data presentation an-
imation with more close-ups to ROIs, where would be some
tissues or lesions the users are interested in, it requires to
achieve the statement parameters bout ROIs. The parameter

assignment module of the code generator consists of linked
dual-space views, i.e., an interactive visualization space and
a coding space. Actually, parameter assignment module can
also compile the generated codes into presentation anima-
tions by calling the functions of the compiler because the
dual-space views are linked in real-time. The visualization
space provides visual steering and visual feedback in real-
time, and the script codes in the coding space will also be
compiled in real-time. It means all the interactive parameter
assignments steered by an interaction device (e.g., mouse)
in the visualization space can be automatically translated
into script codes in real time according to the grammar, and
all the codes edited in the coding space can be realized in
the visualization space by the compiler of IGScript in real-
time (G3). In this way, users are allowed to place and move
an ROI boundary box in the visualization space by coarse-
grained tuning and then adjust its position slightly in the
coding space.

The grammar of the statement defineROI in the param-
eter assignment module can be designed as follows,

1 defineROI (roiID=1, roiName=“ROI#01” , at (0 , 0 , 0) ,

size =(0 . 2 , 0 . 2 , 0 . 2)) ;

The initial coarse-grained position (at) and size of an ROI
can be assigned by mouse dragging and mouse wheel zoom-
ing its 3-D boundary box in the visualization space, and
the corresponding values in coding space will be changed ac-
cordingly (G1). Then, a fine-grained step can be conducted
in the coding space to slightly adjust the 3-D position values
because it is difficult to use mouse to perform fine-tuning
and it just works better in 2-D space (G1). For more detail-
s about the parameter assignments such as ROI definition,
please refer to the supplementary video of the paper. Once
an ROI has been defined in the parameter assignment mod-
ule, it can be used by the whole IGScript system because it
is serialized into a local configuration file. Therefore, ROIs
for each scientific data just need to be defined only once.

3.3 General-purpose Grammars

The datasets currently supported by IGScript are some tra-
ditional scientific data, including map-based 2-D scalar, 3-D
scalar, vector, or diffusion tensor imaging data. The general-
purpose interaction grammars of IGScript are summarized
and abstracted into four types of data presentation function-
s, i.e., versatile data loading, object transformations, anima-
tion controls, and scene switching of the camera. We describe
them in details below (G2).

First, the statement load is designed like a C++ overload-
ing function to support multiple data types. The four types
of scientific data that are currently supported can be loaded
by invoking different run-time data loading functions. The
overloading design makes people who are not familiar with
programming relatively easy to load different types of data.
It should be noticed that the sample script codes with all
types can be selected from a list before the script editing.

1 load {
2 data (string dataFile) ; map (string mapFile) ;

IGScript: An Interaction Grammar for Scientific Data Presentation CHI ’21, May 8–13, 2021, Yokohama, Japan

3

4 volumeData (string dataFile) ;

5 rgbaScheme (string tf) ; // transfer function

6

7 vectorFieldData (string dataFile) ;

8

9 dtiData (string dataFile) ;

10 } ;

Second, the object transformations are encapsulated by
three transformation identifiers, i.e., rotate, scale, and trans-
late in order to change the objects when generating presen-
tation animations. The overloading function rotate and the
parameters could be legible and semantic identifiers, such as
the X-, Y- or Z-axes, the global angle (i.e., 360 degrees), or
even a 3-D vector in a general form.

Third, the animation control grammars are designed to
control the production of data presentation animations. For
example, the statement animate can be exploited to set
a global animation speed when generating a presentation
animation. In addition, all the basic interactive presentation
animations can be conducted simultaneously by using the
code block parallel . All the statements in the code block
can be specified by individual duration time ranges.

Fourth, ROI-driven scene switching of the camera is also
vital in the general-purpose grammar design, where ROIs
are the important feature the users are interested in, e.g. the
regions of tissues or the lesions in a medical volume data. The
ROI positions can be interactively specified by the statement
defineROI in a dual-space. Then, the defined ROIs can
be sequentially viewed in the presentation animation by the
statement locate, where the stay time (duration) for each
ROI and the switch time (interval) between two successive
ROIs can be further customized. IGScript follows the shot
change style in film (documentary) photography. The stay
time and switch time can be changed to make transitional
scene switching between ROIs as smooth as possible.

1 rotate { axis=string , angle=string , duration=f loat

seconds } ;
2 rotate { axis=(f loat , f loat , f loat) , angle=f loat

degrees , duration=f loat seconds } ;
3 translate {to (f loat , f loat , f loat) , duration=f loat

seconds } ;
4 scale { factor=(f loat , f loat , f loat) , duration=f loat

seconds } ;
5 animate { speed=string } ; // [low , moderate , high]

6 parallel { // executed concurrently

7 rotate { axis=(f loat , f loat , f loat) , angle=f loat

degrees , duration=f loat seconds } ;
8 scale { factor=(f loat , f loat , f loat) , duration=

f loat seconds } ;
9 translate {to (f loat , f loat , f loat) , duration=

f loat seconds } ;
10 } ;
11

12 defineROI (roiID=int , roiName=string , at (f loat ,

f loat , f loat) , size=(f loat , f loat , f loat)) ;

13 locate {
14 roiArray=string [roiName#1, roiName#2, roiName

#3 , . . .] ,

15 foreach {
16 duration=f loat seconds ,

17 interval=f loat seconds

18 }
19 } ;

The parameters of most statements in IGScript can be
visually assigned in a dual space with two linked views. Ex-
amples include the position parameters to of translate, the
position parameters at of defineROI , the scaling parame-
ters factor of scale, etc. For more details about the param-
eter assignment module in the code generator, please refer
to Section 3.2.

3.4 Application-specific Grammars

We design some application-specific grammars to solve some
classic data presentation issues in vector field data visual-
ization and DTI data visualization (G2). Examples include
clustering analysis and OD query [27, 29, 51, 52] for vector
field visualization, 3-D box queries and their arbitrary logic
combinations for DTI fiber visualization.

Streamline, pathline, and streakline are three tradition-
al vector field visualization approaches. Clustering analysis
and OD query that can be used to reduce visual clutter and
support further interactive explorations are two frequently-
used techniques exploited in line-based visualizations. These
techniques can be used to group lines, reduce visual clut-
ter or conduct source destination analysis. If we take path-
line as an example, IGScript enables to generate presenta-
tion animations for pathlines in an overview-to-details way.
Specifically, IGScript enables to split the tracking camera
into N lenses to generate a group of comparative tracking
animations for the major clusters by trace. There are sever-
al modes for group tracking. In realtime mode, the number
of tracking cameras equals to the number of clusters output
by clustering algorithm. In both origin and destination
mode, the number of tracking cameras N equals to the num-
ber of clusters corresponding to the top N eigenvalues of the
clustering algorithm. It can be initially specified by users vi-
a the statement colorOfCenterPathline because different
clusters will be rendered in different colors. The two modes
mean to cluster the original seed positions and the destina-
tion positions of all traced pathlines, respectively. It should
be noted that the clustering algorithms and dimension re-
duction algorithms can be customized in the IGScript codes
according to different datasets and different application sce-
narios by clusteringAlg . The lifeTime of all the pathlines
could be assigned to restrict the length of the pathlines. Fur-
thermore, the rendering style of all lines in IGScript can be
assigned to be lineStyle or tubeStyle.

Alternatively, users can specify the camera splitting/merg-
ing scheme manually by halfMergeSplit in an “Overview +
Details” scheme, after getting representative pathlines and
OD query clusters. It enables users to split cameras into t-
wo halves to see more details of the clusters, or merge the
two halves into one to see the overview, where the split-
ting/merging strategy can be customized by the parame-
ters of timeSlots. The data presentation animations can
be customized as overview-to-details, overview-to-details-to-
overview-..., cyclically. For example, if there are N (N = 4)

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

representative pathlines are recommended, the parameter
list “[overview3months,5,9,0,3]” is meant to generate a p-
resentation animation starting from an overview of all the
pathlines for their first 3 months’ pathline tracing. In the
following steps, one camera is split into two for the next 5
months’ tracing, two split into four for the next 9 months’
tracing, four merge into two for the next 0 month’s tracing
due to the maximum camera number is restricted by N = 4
(skip this one), and finally merge into one (overview) for the
final 3 months’ tracing.

1 trace {
2 mode=string , // [destination , origin , realtime]

3 clusteringAlg=[dbscan , kmeans , pca , . . .]

4 lifeTime=f loat , // lifetime of traced fieldlines

5 colorOfCenterPathline=[c1 , c2 , . . .]

6 } ;
7 halfMergeSplit { // overview -to - details

8 timeSlots=[overview t1timeUnits , t2 , t3 , . . .]

9 }
10 lineStyle {color=colorL , width=f loat } ;
11 tubeStyle {color=colorT , thickness=f loat } ;

In DTI fiber data visualization, 3-D box queries and their
arbitrary logic combinations (e.g., intersection, union, and
complement) are significant to explore DTI data to satisfy
users’ kinds of complex query requirements [14, 16]. The fiber
tracts passing through the 3-D query boxes can be highlight-
ed [14]. Logic combinations of query boxes aim to reduce
visual clutter and help obtain a deep insight into the anal-
ysis of DTI fiber data [16]. The statement placeANewBox
is also designed to be an overloading function. The position
of the newly placed box can be assigned according to the
ROIs defined by defineROI or specified by the parameter
assignment module of code generator (refer to Section 3.2).

In addition, all 3-D query boxes can be moved by move-
ABox , and their sizes can be changed by scaleABox . The
animation speeds specified by the duration time of the t-
wo statements can be increased to obtain additional details
when an ROI box is moved or its size is changed. However,
this step is tedious and time-consuming in the traditional
method [14] because it requires at least three control widget-
s (e.g., sliders designed by Chen et al. [14]) on GUI to change
the 3-D position, if users want to obtain precise control. The
parameters can be determined by the above-mentioned pa-
rameter assignment module of the code generator.

More importantly, arbitrary logic combinations of mul-
tiple query boxes can be flexibly customized by the query
expression in show (queryExpr) due to the legible and un-
ambiguous script grammar. Specifying all the logic operators
between the query boxes by the traditional GUI controls or
the traditional interaction devices is difficult for people be-
cause the number of the query boxes is undetermined and
the size of the combinatorial space (logic combinations of in-
tersection, union, and complement) increases greatly as the
number of query boxes increases. For example, if A, B, and
C represent three ROIs in white matter, grey matter, and
corpus callosum, respectively, then simple and legible query
expressions, namely, show(A∩(B∪C)), show((A∪B)∩C)

and show(A∩not(B∪C), are easy to edit in IGScript. How-
ever, designing GUI controls or interaction to customize an
arbitrary logic combination over A, B, and C through the
traditional GUI designs [14, 16] is difficult. Furthermore, a
new control widget should be added in the GUI in runtime
if users add a new box D, which is unscalable for the GUI
designs and the combinatorial number is greatly increased.
Additionally, users can use the code block with to set a local
value of color and opacity within its statement scope.

For more detailed information about the compiler struc-
ture and the application-specific algorithms, please refer to
Appendix A.

1 // overloading " placeANewBox ": assigned by an ROI

2 placeANewBox { boxID (string) , at (roiName=string) ,

color=c , alpha=f loat } ;
3 // overloading " placeANewBox "

4 placeANewBox { boxID (string) , at (f loat , f loat , f loat)

, size=(f loat , f loat , f loat) , color=c , alpha=

f loat } ;
5 moveABox { boxID (string) , to (f loat , f loat , f loat) ,

duration=f loat seconds } ;
6 scaleABox { boxID (string) , factor (f loat , f loat , f loat

) , duration=f loat seconds } ;
7

8 // code block " with ": set local color and opacity

9 with (color=c , alpha=f loat) {
10 show (queryExpr) ; // e.g., show (not (A∩B)∪(C∩D))

11 pause (f loat seconds) ;

12 show (queryExpr) ; // e.g., show ((A∩C)∪(B∩C))

13 } ;

4 USER STUDY

We conduct a user study to examine if non-experts and do-
main experts with limited programming skills could create
their desired data presentation animations by IGScript. In
the user study, we aim to evaluate IGScript regarding three
aspects, which are coincident with the above-mentioned de-
sign goals G1-G3: (a) whether users can define ROI easily
(G1); (b) whether the generated animations are what users
want (G2); (c) whether it is allowed to edit the small clips in
an animation (G3). We will describe the considerations for
all questionnaire questions in Section 4.3.

Figure 1: (a) Age distribution of participants. (b)
Pre-study: domain experts have limited experience
in programming but most of them have learned one
coding language.

4.1 Participants and Settings

We recruit 14 participants (8 males, ages: 18 to 46, aver-
age: 29), who are 8 doctors from different hospitals and 6

IGScript: An Interaction Grammar for Scientific Data Presentation CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 2: Post-study: questionnaire results. Most of
participants react positively to IGScript.

non-expert novice users with different majors. We choose
doctors as participants because they are highly relevant to
the biomedical data (two volume datasets, two DTI fiber
datasets). They are the largest potential users of IGScript.
Six non-expert users have different domain knowledge and
have limited knowledge in programming. Figure 1 (a) illus-
trates age distribution of the participants. We pre-screen the
participants to ensure that most of them have ever learned
one programming language, as shown in Figure 1 (b). The
gifts prepared for the participants are independent of their
performance. Besides, they are not the co-authors of the pa-
per.

Most of the IGScript’s usage scenarios in the paper are
medical data presentations, including the medical volume
data, DTI fiber data, and code generator evaluation on DTI
fiber data. Participants need to write their own script codes
by IGScript during their explorations. All the participants
have their identification numbers (P1-P14).

4.2 Procedures of the User Study

Participants fill out a consent form and personal informa-
tion, accomplish five tasks with IGScript, including a free
exploration by using IGScript, and then conclude with a
post-study survey and an interview about the feedback and
suggestions.

Demonstration and Training (20 mins). The investi-
gators hand out manuals related to data and scripts and in-
troduced scientific visualization to participants. The syntax
and usage of IGScript and different data forms that IGScript
used are also introduced. Participants need to explore the da-
ta we provided. They could request guidance and assistance
when necessary. Participants are encouraged to explore freely
until they feel confident about the usage and the user study.

Replications (25 mins). The investigators show tasks to
be replicated by participants. In this part, participants need
to write scripts to reproduce carbon emission data presenta-
tion animation, volume data presentation animation, diffu-
sion tensor imaging data presentation animation and path-
line data presentation animation. Most available features of
IGScript are covered in the scripts that required replications.

Free Exploration (10 mins). Next, participants are free
to explore the data used in replications to test the dual-space
view to evaluate the ROI definition functions. The presenta-
tion process can be recorded by the code generator and the
corresponding presentation scripts are generated automati-
cally. If an area caught the attention of the participant, he
could save the region as a custom ROI for a second loading.

Post-study Survey and Interview (15 mins). We
use a five-point Likert scale (1: strongly disagree, 5:strong-
ly agree) in this user study. The questions in the question-
naire relate to involvement (Q1), usability (Q2-Q5), correct-
ness (Q6-Q8), practicability of ROI (Q9-Q10) and effect of
IGScript (Q11-Q14). Besides, the investigators also collect
some comments and suggestions from the participants, which
are about the most impressive task and any suggestions of
IGScript.

4.3 User Study Results

All participants complete the tasks in about 25 minutes. Af-
ter that, the investigators have a conversation with partici-
pants to get feedback on scripts and tools. Figure 2 shows
the questionnaire and the average score of each question.
We will analyze questionnaire scores and qualitative evalu-
ation from involvement, usability, correctness, practicability
of ROI and effectiveness of IGScript.

Usability. Since the target audiences are domain experts
and the public who have limited knowledge about program-
ming, IGScript should be easy to learn and use. Based on
the evaluation results of Q2 (µ = 3.64, 95% CI = [2.97, 4.32],
the evaluation for G1), IGScript is recognized for its usabil-
ity. In particular, regarding Q3 (µ = 2.57, 95% CI = [1.99,
3.16], G2 and G3), participants react with neutral responses
in the user study evaluation. We find the domain experts
tend to give lower scores on Q3. Thus we revisit some of
participants again and they consider it better if we provide
more sample codes.

For Q4 (µ = 3.29, 95% CI = [2.87, 3.70], G2 and G3)
and Q5 (µ = 3.64, 95% CI = [3.06, 4.22], G1), users reacted
positively to the comprehensible scripts. When the investi-
gators show our method, “it seems to be much easier to get
precise 3-D positions of an ROI by the dual-space linked
views” (P6, P7, P8, P9, P10, P11 and P13). Most of the
participants find IGScript codes are more intuitive (Q2) and
easier to write than traditional languages (Q4 and Q5), be-
cause they are closer to natural languages supported by the
standalone compiler.

Correctness. In the correctness questions, a lot of posi-
tive feedback has been collected. For example, Q6 (µ = 3.71,
95% CI = [2.96, 4.47], G2) is to evaluate the map-based da-
ta presentation, Q7 (µ = 4.00, 95% CI = [3.31, 4.69], G2)
for the medical volume data presentation, and Q8 (µ = 3.71,
95% CI = [3.07, 4.35], G2) for the DTI data presentation.
However, seven participants indicate that they have difficul-
ty in entering perfectly correct scripts at the beginning. In
this regard, we guide them to reference some sample codes
for each data presentation.

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

Practicability of ROI definitions. Regarding ROI def-
initions, most of the participants describe the design is help-
ful in their explorations. We can see their positive comments
of ROI definitions: “It makes a good contribution to better
explore medical data by using ROI definitions” (P1). They
are also interested in the function of automatically generat-
ing code to record interactive explorations. P7 declares that
this feature is friendly to novice students. At first, some par-
ticipants are concerned about the tasks because they have
never explored in this way (P7). We note that participants
know the purpose of the ROI definitions and the ease of us-
ing ROI as they develop a deeper understanding of IGScript.
The questions Q9 (µ = 4.00, 95% CI = [3.42, 4.58]) and
Q10 (µ = 4.00, 95% CI = [3.37, 4.63]) are also designed to
evaluate G1.

Effectiveness of IGScript. Participants have different
opinions for the effectiveness of IGScript. However, they still
gave positive feedback on Q11 (µ = 4.43, 95% CI = [4.10,
4.75], G2) and Q12 (µ = 4.54, 95% CI = [4.21, 4.87], G2).
“IGScript is very useful in popularization of science. It help-
s to understand the structure of the lesion while having a
good sense of substitution. In medical diagnosis, it offers an
approach to record the exploration route” (P8). Eight partic-
ipants think that IGScript can help teaching to some extent
(Q13 (µ = 2.86, 95% CI = [2.15, 3.57], G2)), and 11 partici-
pants think IGScript can help peer-experts’ discussion (Q14
(µ = 4.00, 95% CI = [3.51, 4.49], G2 and G3)). Besides, “the
generated animation of the hand data is impressive” (P6),
and “the lung data animation clearly reflects the structure
of the lesion, which is easy to understand” (P11).

Involvement. In response to Q1 (µ = 4.36, 95% CI =
[3.93, 4.78]), almost all participants think they feel quite
concentrated on the study, and they all agree with the design
philosophy of IGScript.

Suggestions and User Response for Improvements.
In addition, some constructive suggestions are made by two
participants, which are listed as follows:

P5: “I think IGScript is applicable to science populariza-
tion and teaching. It can go deep into surgical navigation,
especially the definition of ROIs”. P8: “The encoding can be
organized in a fill-in-the-blank scheme. Some design about
bug fixing could be introduced to further improve the usabili-
ty when script codes are too long”. Given the user feedbacks,
we consider optimizing the code editor in the future to avoid
having users memorizing the statement identifiers as much
as possible.

In particular, we find the domain experts tend to give low-
er scores on Q3. Thus we revisit some of participants and in-
terview more experts after the first user study. We find that
they consider it would be better if we provide more sample
codes (Q15, µ = 4.44, 95% CI = [4.18, 4.70]). Besides, they
think it would be better if the identifiers and parameters of
codes could be redefined using their technical terms or clos-
er to natural languages. Actually, the compiler of IGScript
makes it flexible for us to redefine the identifiers and state-
ment structures for different domains. We will discuss the
future work about domain-specific grammars in Section 6.

We have additionally interviewed another 12 non-experts
with different majors, who also have little knowledge about
programming. Most of participants like the IGScript design
because it enables them to customize the data presentation
codes that can be reused and shared by other experts (Q17).
They also think the presentation animations generated by
IGScript are much better than the traditional visualization-
s in freshmen education (Q18). Furthermore, most of them
suggest us to design a GUI-based flow chart with multiple
visual code blocks in the coding space (Q16). Users can edit
the code blocks by clicking them and they just need to ed-
it the editable parameter values in the coding space. They
think it would be much better to conceal some currently un-
changed codes. All potential extensions of IGScript will be
discussed in the future work part in Section 6.

5 DEMONSTRATIONS AND RESULTS

We demonstrate the usability, customizability, and flexibili-
ty of IGScript by several presentation examples about the
traditional scientific data such as 2-D scalar field data, 3-
D scalar field data, vector field data, and diffusion tensor
imaging fiber data.

Furthermore, all the application-specific cases are designed
according to the domain experts’ requirements. We find that
visual traversals across ROIs can help peer-experts discus-
sion (Q14) and surgical planning for doctors for the three
medical data (Q11 and Q12). In addition, OD flow query [27,
29, 51, 52] and 3D box queries [1, 14, 31, 49] for DTI data
are also requirements of domain experts.

All the animation demonstrations could be found in the
supplementary video of the submission.

5.1 2-D Scalar Field Data Exploration

The presentation example on 2-D scalar field data in this pa-
per is conducted on a map-based visualization. The dataset
used in this case includes carbon emission data, which are
observation data collected by satellites. We conduct two ex-
periments for the 2-D scalar field data presentations.

In the first case, a script-driven illustrative animation video
is generated by a simple and legible statement rotate. Figure 3
(a) shows only two snapshots of the animation. The Earth is
rotated along the axis Y (i.e., the Earth’s axis). The script
is flexible enough to change the parameter values into a gen-
eral form by using an overloading function of rotate or even
a collection of basic interaction by the code block parallel .

In the second case, an illustrative animation that has sev-
eral transitional scenes switching across multiple ROIs is gen-
erated. The five ROIs used in this case are defined by the
statement defineROI (G1). Then, each ROI can be located
one by one by using locate. All the ROIs need to be defined
only once through the code generator (Section 3.2), and then
all defined ROIs for each dataset are saved to a local file, as
shown in Figure 3 (b) (G1).

A challenging issue of the traditional demo animation pro-
duction is that achieving precise control to generate gentle
and elegant transitions is difficult. For example, rotating the

IGScript: An Interaction Grammar for Scientific Data Presentation CHI ’21, May 8–13, 2021, Yokohama, Japan

(a) foreach {duration=3 seconds,

 interval=5 seconds}

}; // end of locate

Western Europe Africa North America South America Asia

 //load carbon emission data and its map: global view

load{map("blackMap"); data("carbonEmission");};

rotate{axis=Y,angle=global,duration=36 seconds};

//defineROI (...); // define all ROIs using parameter assignment module via vis.

locate { // space and coding space (all ROIs are defined only once)

roiArray = string["WesternEurope", "Africa", "NorthAmerica", "SouthAmerica", "Asia"],

(b)

Figure 3: Animation snapshots of overview-to-details presentation for 2-D scalar field data: (a) (overview) a
36-sec presentation animation will be generated by the statement rotate. (b) (details) a presentation animation
with transitional scene switching across multiple ROIs is generated by the statements defineROI and locate.

Overview Forefinger Middlefinger Littlefinger Vessels

//defineROI (...);

load { volumeData("human_lung");

rgbaScheme("rgba_lesions"); };

locate {

 roiArray=["Overview", "Le�part",

 "Le�part_top", "Le�part_bo�om",

 "Rightpart"],

 foreach {

 duration=25 seconds,

 interval=2 seconds }

}; // end of locate

load { volumeData("hand");

rgbaScheme("boneSkinVessel");};

locate {

 roiArray=["Overview", "Forefinger",

 "Middlefinger", "Li�lefinger",

 "Vessels"],

 foreach { duration=20 seconds,

 interval=2 seconds

 }

}; // end of locate

Overview Leftpart Leftpart_top Leftpart_bottom Rightpart
(a)

(b)

Figure 4: Snapshots of overview-to-details animations for the dataset lung (a) and the dataset hand (b). The
transitional scene switching follows the shot change style in film photography.

Earth by 10 longitudes per second evenly around the Earth’s
axis is highly impossible for people, because it is hard for
people to achieve a precise rotation angle by mouse with-
in a given time. Besides, making a slight transition in shot
changes between ROIs, such as the style in film photography
in the second case, is also difficult.

Furthermore, the data presentation steps of the tradition-
al demo animation production could not be changed once it
is rendered to a video file. However, IGScript makes the data
presentation steps editable (cut, copy, paste, delete, append,
stitching, etc.) (G3). In the second case, for example, if a
user such as a climatologist is going to give a populariza-
tion of science talk (or peer-expert’s discussion) on climate
change, and we note that some of the audiences may be in-
terested in the carbon emission in the North Pole and the
South Pole, editing the script codes to insert two seamless
short animation clips into the existing animation. It allows
to output a new demo video easily and efficiently by IGScript
without changing the scientific visualization codes. The two
corresponding ROIs (“NorthPole” and “SouthPole”) could
be flexibly defined by the code generator of IGScript (G3).
The demonstration of this process could be found in the sup-
plementary video of the paper. Nevertheless, it requires to
re-record the whole demo video by the traditional demo an-
imation production to satisfy the above-mentioned require-
ment.

5.2 3-D Scalar Field Data Exploration

A script-driven illustrative animation for volume (3-D scalar
field) data presentation can also be generated by IGScript.
In this case, we use two volume datasets (human lung and
hand) to demonstrate its usability and customizability.

Two animations for the two datasets are generated by
IGScript, some snapshots of which are shown in Figure 4. For
the human lung, the lesions around lungs are illustrated in an
overview-to-details way. For the lesions on the left lung, for
example, the animations are generated from the overview to
the details (the left front view and right front view), as shown
in Figure 4 (a) (G2). A potential application of this case can
be a talk that spreads knowledge about how coronavirus
disease 2019 (COVID-19) infects a lung. It can be found
that it is easy for users to customize the presentation steps
by IGScript in this scenario, as shown in the supplementary
video of the paper.

For the second dataset (Figure 4 (b)), the overview-to-
details animation can also be generated by similar script
codes. The transitional scene switch follows the shot change
style in film photography, and the stay time and switch time
can be changed to make the transitional scene switching be-
tween ROIs as smooth as possible (G2). Similarly, the script
codes are easy to edit, e.g., to cut, copy, paste, delete, add
new ROIs, or remove some defined ROIs for different appli-
cation scenarios (G3).

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

TimeStep25 (1 lens)TimeStep01 (overview) TimeStep10 (2 lenses)

load {vectorFieldData("ocean.dat")};

animate {speed=moderate};

trace { mode=origin, //or des�na�on
 clusteringAlg=[pca, dbscan],

 lifeTime = 20 days,

 colorsOfCenterPathline

 = [yellow, blue, red, green]

}; //4 colors means 4 lenses (max)

halfMergeSplit {

 timeSlots

 =[overview3days,5,9,0,3] };

//manually cyclic camera splitting

(a) mode = origin: orginal points clustering to recommend 4 representative pathlines

TimeStep20 (4 lenses)

TimeStep01 (overview)

(b) mode = destination: destination points clustering to recommend 4 representative pathlines

TimeStep25 (1 lens)TimeStep10 (2 lenses) TimeStep20 (4 lenses)

Figure 5: Animation snapshots with four time-steps (#01, #10, #20, #25) for the ocean data presentation.
The camera splitting/merging strategy is customized by halfMergeSplit in the two animations. We select the
top N (N = 4) representative pathlines in this case study for both the origin clustering (a) and the destination
clustering (b) for better comparison.

// define all ROIs in parameter assignment module via visualization

// space and coding space, which will be invoked only once for each ROI

// defineROI (...); // defined ROIs are global variables

load {dtiData("human_brain01")};

lineStyle {color=green, width=1.0};

placeANewBox {boxID("A"), at("ROI#HB11"), color=green, alpha=0.5};

placeANewBox {boxID("B"), at("ROI#HB12"), color=red, alpha=0.6};

placeANewBox {boxID("C"), at("ROI#HB13"), color=yellow, alpha=0.6};

(b) The proposed IGScript(a) Chen et al. VIS��09

Figure 6: The case of DTI fiber data and its IGScript codes. It is easy to use IGScript to reproduce a similar
result to the work [14] without changing the visualization and rendering codes. (a) The ROI query result
generated by the work (Chen et al. [14]). (b) Three query boxes are placed at the positions of the defined
ROIs to query DTI fibers individually.

5.3 Vector Field Data Exploration

Clustering analysis and OD query are two important tech-
niques used in line-based visualization for vector field data.
These approaches can be employed to reduce visual clutter
and support some further analysis such as OD analysis. The
clustering-driven camera splitting and tracking can be im-
plemented by the statement trace by specifying the mode
to be realtime in the camera tracking step (G2). The value
of N could be either determined by the number of clusters
C, e.g., N = 0.8 × C, or assigned in the codes by colorOf-
CenterPathline.

Alternatively, users can specify the camera splitting/merg-
ing scheme manually by halfMergeSplit after getting the
representative pathlines and OD query clusters. Figure 5 (a)
and Figure 5 (b) are the four snapshots of the two tracking
animations for origin points clustering and destination points
clustering, respectively. The camera spliting/merging strat-
egy is customized by halfMergeSplit (G2). The parameter
list “[overview3days,5,9,0,3]” means to generate a presenta-
tion animation starting from an overview of all the pathlines
for their first 3 days’ pathline tracing. In the following steps,
one camera is split into two for the next 5 days’ tracing, two
is split into four for the next 9 days’ tracing, four is merged
into two for the next 0 day’s tracing due to the maximum

IGScript: An Interaction Grammar for Scientific Data Presentation CHI ’21, May 8–13, 2021, Yokohama, Japan

(a)"show(E∩not(F))"

(c) Place 4 New Boxes: A, B, C, D

load {dtiData("pig_heart")};

lineStyle {color=red, width=1.0};

placeANewBox {boxID("A"), at("ROI#PH14"), color=red,alpha=0.8};

placeANewBox {boxID("B"), at("ROI#PH15"), color=green,alpha=0.8};

placeANewBox {boxID("C"), at("ROI#PH16"), color=purple,alpha=0.8};

placeANewBox {boxID("D"), at("ROI#PH17"), color=brown,alpha=0.6};

(c)

// defineROI (...); // defined ROIs are global variables
load {dtiData("human_brain02")};

placeANewBox {boxID("E"), at("ROI#HB21"), color=red, alpha=0.8};

placeANewBox {boxID("F"), at("ROI#HB22"), color=yellow, alpha=0.8};

with (color=green,alpha=1.0) {

 show(E∩not(F)); }; // end of with

(a)

(b)"show(G∩H∩I)"

(d)"show(B∩(A C D))"

load {dtiData("pig_heart")};

with (color=yellow,alpha=1.0) {

 show(B∩(A C D));

 pause(5 seconds); // after 5-sec pause,

 // show(...); // then show other queries
}; // end of with

(d)

load {dtiData("pig_heart")};

placeANewBox {boxID("G"),at("ROI#PH11"), color=red,alpha=0.8};

placeANewBox {boxID("H"),at("ROI#PH12"), color=green,alpha=0.8};

placeANewBox {boxID("I"),at("ROI#PH13"), color=orange,alpha=0.8};

with(color=yellow,alpha=1.0) {

 show(G∩H∩I); }; // end of with

(b)

A

B C

D
A

B C

D

G

H

I

E
F

Figure 7: The expression-based queries for DTI fiber data. (a) The queried fiber tracts of “show(E∩not(F))”
(can be also written as show(E-F)). (b) The queried fiber tracts of “show(G∩H∩I))”. (c) Place four
boxes to highlight the DTI fiber tracts which pass through each box. (d) The queried fiber tracts of
“show(B∩(A∪C∪D))” (can be also written as (B∩A) ∪ (B∩C) ∪ (B∩D)).

camera number is restricted by N = 4 (skip this one), and
finally merged into one (overview) for the final 3 months’
tracing.

The clustering and principal direction extraction algorithm-
s applied in the camera splitting step and the camera track-
ing step can be customized in the script codes by the identi-
fier clusteringAlg . The optional algorithms could be PCA,
DBSCAN, or K-means.

5.4 Diffusion Tensor Imaging Data
Exploration

DTI is a technique that measures the direction of water dif-
fusion in biological tissues. The characteristics of water dif-
fusion in biological structures (e.g., brain, heart, etc.) can be
mathematically summarized by a diffusion tensor field [14].
A DTI dataset can be represented with a set of fiber tracts or
3-D pathways. In this case, we use three DTI fiber datasets
(from open data [13]), i.e., two human brain datasets, and
one pig heart dataset.

Chen et al. developed a novel interface [13, 14] and a se-
ries of novel techniques [15, 16] to visualize DTI fiber data.
IGScript can be easily used to reproduce one of the results
generated by the work [13, 14] (Figure 6 (a)). It just needs to
write three simple IGScript codes by using placeANewBox
to show the individual query results in different colors, as
shown in Figure 6 (b). It should be noted that IGScript not
only allows to reproduce the static image result (Figure 6
(a)), but also enables to make the static image animated
without changing the visualization codes by adding a state-
ment animate (G2). The demonstration could be found in
the supplementary video.

More importantly, arbitrary logic combinations of multi-
ple query boxes can be easily defined by the query expression

in show (queryExpr) due to the flexible, legible, and unam-
biguous script grammar of IGScript. The query is difficult to
achieve using the traditional designs [13, 14] or the tradition-
al GUI interfaces, as mentioned in Section 3.4. For example,
a query expression show(E∩not(F)) highlights the molecule
pathways passing through the box E but not F, as shown in
Figure 7 (a), and the expression show(G∩H∩I)) highlights
the pathways passing through G, H, and I successively, as
shown in Figure 7 (b).

A more complicated case such as show(B∩(A∪C∪D)),
which presents the molecule pathways that consist of three
parts: (1) show(B∩A) passing through B and A successive-
ly, (2) show(B∩C) passing through B and C successively,
and (3) show(B∩D) passing through B and D successively,
as shown in Figure 7 (c-d) (G3). The code generator can be
used to define a box named A at the inner capsule, B at
the corpus callosum, C at the brain stem, and D at outer
capsule. Thus, the pathways passing through the corpus cal-
losum and the other three tissues can be highlighted in the
color specified by with .

5.5 Performance and Complexity Analysis

We have also conducted performance evaluation and com-
plexity analysis for the designed compiler. The compiling
time for all script codes used in the experiments is short-
er than 1.253 milliseconds (Appendix B) because it is only
an interpreting compiler without a relocator and linker. The
compiling time of the codes for pathline presentation is s-
lightly longer than that of the others because it needs to do
color bindings for all clusters in the statement trace. For
more information about the performance evaluation of the
compiler, please refer to Appendix B.

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

6 DISCUSSION AND FUTURE WORK

There are some limitations of IGScript and we plan to ad-
dress them in future work:

The utility of IGScript would be enhanced by further
working on its automatic ROI detection because the ROIs
are vital to obtaining a deep insight into scientific data p-
resentations and analysis. The ROIs in the current version
are interactively defined by defineROI in the dual-space
tool of the code generator. We plan to use machine learn-
ing approaches to recommend ROIs, where the regions are
the locations with salient features. The feature would en-
able the animation of ROI traversals to be generated fully
automatically. Alternatively, the log data of presentation an-
imation can be fully utilized to recommend ROIs. The inter-
active exploration processes can be recorded as script codes
by IGScript, and the target regions can be recorded into log
data. Besides, an eye-tracking device would be a good option
for collecting data for ROI recommendations.

IGScript is suitable for post-analysis for volume data p-
resentation because the rendering results are dependent on
the transfer function design. IGScript uses the statement rg-
baScheme to select and load the existing transfer functions.
Thus, the transfer functions should be designed and ready
before the volume data presentation if we are desired to get
an effective case study (or storytelling).

The current version of IGScript covers data story cases
on the four frequently-used general data types in scientific
visualization. It can be easily adapted to other use cases for
these types of data. As for a new data type, APIs on data
loading and application-specific presentations (if any) should
be added to the IGScripts library, while the general-purpose
presentations are directly supported. The coverage of the
general-purpose presentations of IGScript includes ROI defi-
nition (G1) and viewpoint changing (G2). Besides, IGScript
is not limited by data size. It can process larger data if the
hardware can handle it. We do not evaluate the scalability
on data size because it is not the current contribution of this
work.

Regarding the general-purpose grammars, it is easy to
connect them with the existing open-source systems like
Paraview and VTK. IGScript uses quaternions, which can
be converted to homogeneous transformation matrices. The
quaternions and matrices can be directly loaded by the track-
ball component of the open-source systems. Regarding the
application-specific grammars, they should be added to the
libraries of the open-source systems. For example, the li-
braries of pathline tracking in vector field data presentations
and set operators on DTI fiber queries should be added in-
to the open-source systems, if the application-specific gram-
mars are also expected to be supported.

Some of user study participants consider it would be bet-
ter if we provide more sample codes, or if the identifiers and
parameters can be redefined using their technical terms or
closer to natural languages, as described in Section 4.3. In
the future work, we plan to design domain-specific grammars
for different domains by using the corresponding technical

terms or making the grammar closer to natural languages.
Furthermore, some of participants suggest us to visualize
the flow chart with visual code blocks. Users just need to
edit each code blocks and the editable parameter values in
the coding space. They think it would be much better to
provide the flow charts for each presentation animation and
conceal some currently unchanged codes. In the future, we
plan to visualize the flow chart with code blocks for each
script-driven presentation animation generation.

Additionally, we plan to apply IGScript to storytelling
talks or storytelling discussions among peer experts in the
future. Potential examples include the popularization of sci-
ence talks on Coronavirus Disease 2019 (COVID-19), or the
generation of storytelling animations similar to Hans Rosling’s
TED Talks. Besides, we plan to extend the work to support
more interactive illustrations for scientific data. Another ex-
tension of the work is to apply IGScript to remote immer-
sive exploration in cooperative visualization. The overload-
ed data exchange between VR/AR devices is one of obsta-
cles to the widespread use of immersive devices, especial-
ly remote cooperative data explorations. In this scenario,
IGScript would translate the interactive data story gener-
ation steps into script codes, which would replace the visual-
ized result data (e.g., image data or sub-volume data) in data
transmission. This technique would alleviate the burden on
real-time data exchange among VR devices to a large extent.
Finally, we aim to support more general types of scientific
data.

7 CONCLUSIONS

Most existing interpretive grammar-based scientific visual-
ization approaches enhance the customizability in either the
computation stage, or the rendering stage, or both. How-
ever, few approaches focus on the data presentation stage.
Furthermore, almost all of these approaches leverage the ex-
isting components from the GPLs instead of developing a
standalone compiler. The style of the grammars and pro-
gramming of them are highly dependent on the host GPLs,
which poses a great challenge about the steep learning curves
for the domain experts who have limited knowledge about
programming. Thus in this paper, we design an interaction
grammar-based tool named IGScript for interactive scientific
data presentations. IGScript exerts the advantages of stan-
dalone compiler and script-like grammar named interaction
grammar. The script codes are independent on the host lan-
guage and look simple and can be easy to follow the style of
natural language-like grammars, which is of significance to
the domain experts who have limited knowledge about pro-
gramming. A special-purpose compiler is designed to convert
natural language-like grammar scripts into data presentation
animations, and a code generator (or a decompiler) is devel-
oped to translate the presentation steps into script codes.
Linked dual-space views are designed to provide visual steer-
ing and visual feedback. It makes the animation clips of the
data presentation easy to be cut, copied, pasted, or delet-
ed. The demonstration results show that the flexible, legible,

IGScript: An Interaction Grammar for Scientific Data Presentation CHI ’21, May 8–13, 2021, Yokohama, Japan

and unambiguous interaction grammars of IGScript support
general-purpose and several application-specific data presen-
tations. Evaluations including a user study, four case studies
and performance analysis demonstrate the usability and cus-
tomizability of IGScript.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments and
appreciate all the domain experts and user study partic-
ipants. This work was supported by National Nature Sci-
ence Foundation of China (61702271), and Postgraduate Re-
search & Practice Innovation Program of Jiangsu Province
(SJCX20 0445).

REFERENCES
[1] David Akers, Anthony Sherbondy, Rachel Mackenzie, Robert

Dougherty, and Brian Wandell. 2004. Exploration of the brain’s
white matter pathways with dynamic queries. In IEEE Visual-
ization. IEEE, Austin, Texas, USA, 377–384.

[2] Mohamed Almorsy, John Grundy, Richard Sadus, Willem van S-
traten, David G. Barnes, and Owen Kaluza. 2013. A Suite of
Domain-Specific Visual Languages For Scientific Software Appli-
cation Modelling. In IEEE Symposium on Visual Languages and
Human-Centric Computing. IEEE, San Jose, USA, 91–94.

[3] Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand.
2017. Aether: an embedded domain specific sampling language
for Monte Carlo rendering. ACM Transactions Graphics 36, 4
(2017), 99:1–99:16.

[4] Francisco Pérez Andrés, Juan De Lara, and Esther Guerra. 2007.
Domain specific languages with graphical and textual views. In
International Symposium on Applications of Graph Transfor-
mations with Industrial Relevance. Springer, Springer, Kassel,
Germany, 82–97.

[5] Dimitar Asenov and Peter Muller. 2013. Customizing the visual-
ization and interaction for embedded domain-specific languages
in a structured editor. In IEEE Symposium on Visual Languages
and Human-Centric Computing. IEEE, San Jose, USA, 127–
130.

[6] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik
Sen. 2004. Rule-Based Runtime Verification. In International
Workshop on Verification, Model Checking, and Abstract In-
terpretation. Springer, Springer, New Orleans, USA, 44–57.

[7] Howard Barringer, Alex Groce, Klaus Havelund, and Margaret
Smith. 2010. Formal analysis of Log files. Journal of aerospace
computing, information, and communication 7, 11 (2010), 365–
390.

[8] Howard Barringer and Klaus Havelund. 2011. Internal versus
external DSLs for trace analysis. In International Conference
on Runtime Verification. Springer, Springer, Los Angeles, USA,
1–3.

[9] Howard Barringer, David Rydeheard, and Klaus Havelund. 2008.
Rule systems for run-time monitoring: from Eagle to RuleR.
Journal of Logic and Computation 20, 3 (2008), 675–706.

[10] Michael Bostock and Jeffrey Heer. 2009. Protovis: A Graphical
Toolkit for Visualization. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (2009), 1121–1128.

[11] Kevin J Brown, Arvind K Sujeeth, Hyouk Joong Lee, Tiark
Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2011. A heterogeneous parallel framework for domain-specific
languages. In 2011 International Conference on Parallel Archi-
tectures and Compilation Techniques. IEEE, IEEE, Galveston,
TX, USA, 89–100.

[12] Stefan Bruckner and M. Eduard Grller. 2005. VolumeShop: An
Interactive System for Direct Volume Illustration. In IEEE Vi-
sualization. IEEE, Minnesota, USA, 671–678.

[13] Wei Chen, Zi’ang Ding, Song Zhang, Anna MacKay-Brandt,
Stephen Correia, Huamin Qu, John Allen Crow, David F. Tate,
Zhicheng Yan, and Qunsheng Peng. 2009. Datasets of DTI
Fiber Explorer. http://sourceforge.net/projects/dtiexplorer/.
http://www.cad.zju.edu.cn/chenwei/interface/index.html A
Novel Interface for Interactive Exploration of DTI Fibers.

[14] Wei Chen, Zi’ang Ding, Song Zhang, Anna MacKay-Brandt,
Stephen Correia, Huamin Qu, John Allen Crow, David F. Tate,
Zhicheng Yan, and Qunsheng Peng. 2009. A Novel Interface for
Interactive Exploration of DTI Fibers. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1433–1440.

[15] Wei Chen, Zhicheng Yan, Song Zhang, John Crow, David Ebert,
Ron Mclaughlin, Katie Mullins, Robert Cooper, Zi’ang Ding, and
Jun Liao. 2009. Volume Illustration of Muscle from Diffusion Ten-
sor Images. IEEE Transactions on Visualization and Computer
Graphics 15 (2009), 1425–1432.

[16] Wei Chen, Song Zhang, Stephfan Correia, and David Ebert.
2008. Abstractive Representation and Exploration of Hierarchi-
cally Clustered Diffusion Tensor Fiber Tracts. Computer Graph-
ics Forum 27, 3 (2008), 1071–1078.

[17] Hyungsuk Choi, Woohyuk Choi, Tran Minh Quan, David Hilde-
brand, Hanspeter Pfister, and Won-Ki Jeong. 2014. Vivaldi: A
Domain-Specific Language for Volume Processing and Visualiza-
tion on Distributed Heterogeneous Systems. IEEE Transactions
on Visualization and Computer Graphics 20, 12 (2014), 2407–
2416.

[18] Valerio Cosentino, Massimo Tisi, and Javier Luis Cánovas Izquier-
do. 2015. A model-driven approach to generate external DSLs
from object-oriented APIs. In International Conference on Cur-
rent Trends in Theory and Practice of Informatics. Springer,
Springer, Czech Republic, 423–435.

[19] Marcelo d’Amorim and Klaus Havelund. 2005. Event-based run-
time verification of Java programs. ACM SIGSOFT software
engineering notes 30, 4 (2005), 1–7.

[20] Romuald Deshayes. 2013. A Domain-Specific Modeling Approach
for Gestural Interaction. In IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. IEEE, San Jose, USA,
181–182.

[21] Zachary DeVito, Michael Mara, Michael Zollhöfer, Gilbert Bern-
stein, Jonathan Ragan-Kelley, Christian Theobalt, Pat Hanrahan,
Matthew Fisher, and Matthias Nießner. 2017. Opt: A Domain
Specific Language for Non-Linear Least Squares Optimization
in Graphics and Imaging. ACM Transactions Graphics 36, 5
(2017), 171:1–171:27.

[22] David J. Duke, Rita Borgo, Malcolm Wallace, and Colin Runci-
man. 2009. Huge Data But Small Programs: Visualization Design
via Multiple Embedded DSLs. In International Symposium on
Practical Aspects of Declarative Languages. Springer, Savannah,
GA, USA, 31–45.

[23] Lars George, Arif Wider, and Markus Scheidgen. 2012. Type-
safe model transformation languages as internal DSLs in Scala.
In International Conference on Theory and Practice of Mod-
el Transformations. Springer, Springer, Prague, Czech Republic,
160–175.

[24] John C. Grundy, John Hosking, Karen Na Li, Norhayati Mohd
Ali, Jun Huh, and Richard Lei Li. 2013. Generating Domain-
Specific Visual Language Tools from Abstract Visual Specifica-
tions. IEEE Transactions Software Engineering 39, 4 (2013),
487–515.

[25] Sebastian Günther. 2009. Agile DSL-Engineering with Patterns
in Ruby. Technical Report. Very Large Business Applications
Lab.

[26] Sebastian Günther and Sagar Sunkle. 2012. rbFeatures: Feature-
oriented programming with Ruby. Science of Computer Pro-
gramming 77, 3 (2012), 11–18.

[27] Diansheng Guo and Xi Zhu. 2014. Origin-Destination Flow Data
Smoothing and Mapping. IEEE Transactions on Visualization
and Computer Graphics 20, 12 (2014), 2043–2052.

[28] Charles Hansen and Chris R. Johnson. 2005. The Visualization
Handbook. Elsevier, Academic Press.

[29] Bernhard Jenny, Daniel M. Stephen, Ian Muehlenhaus, Brooke E.
Marston, Ritesh Sharma, Eugene Zhang, and Helen Jenny. 2017.
Force-directed layout of origin-destination flow maps. Inter-
national Journal of Geographical Information Science 31, 8
(2017), 1521–1540.

[30] Pushpak Karnick, Stefan Jeschke, David Cline, Anshuman Raz-
dan, E. Wentz, and Peter Wonka. 2009. A Shape Grammar for
Developing Glyph-based Visualizations. Computer Graphics Fo-
rum 28, 8 (2009), 2176–2188.

[31] Gordon Kindlmann, David Weinstein, and David Hart. 2000. S-
trategies for direct volume rendering of diffusion tensor fields.
IEEE Transactions on Visualization and Computer Graphics
6, 2 (2000), 124–138.

CHI ’21, May 8–13, 2021, Yokohama, Japan Richen Liu, et al.

[32] Gordon L. Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont
Samuels, and John H. Reppy. 2016. Diderot: a Domain-Specific
Language for Portable Parallel Scientific Visualization and Image
Analysis. IEEE Transactions on Visualization and Computer
Graphics 22, 1 (2016), 867–876.

[33] Guozheng Li, Min Tian, Qinmei Xu, Michael J. McGuffin, and
Xiaoru Yuan. 2020. GoTree: A Grammar of Tree Visualization-
s. In ACM CHI Conference on Human Factors in Computing
Systems. ACM, Honolulu, Hawaii, US, 1–13.

[34] Eduardo Marques, Valter Balegas, Bruno F Barroca, Ankica
Barisic, and Vasco Amaral. 2012. The RPG DSL: a case study
of language engineering using MDD for generating RPG games
for mobile phones. In The 12th workshop on Domain-specific
modeling. ACM, Arizona, US, 13–18.

[35] Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice
Hirtzlin, and Gaël Sourimant. 2012. GPU Shape Grammars.
Computer Graphics Forum 31, 7-1 (2012), 2087–2095.

[36] Tim McGraw. 2017. Encyclopedia of Computer Graphics and
Games. Springer, Berlin, Germany, Chapter Tensor Field Visual-
ization, 11–12.

[37] David Méndez-Acuña, José A Galindo, Thomas Degueule, Benôıt
Combemale, and Benoit Baudry. 2016. Leveraging software prod-
uct lines engineering in the development of external DSLs: A
systematic literature review. Computer Languages, Systems &
Structures 46 (2016), 206–235.

[38] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When
and how to develop domain-specific languages. ACM computing
surveys (CSUR) 37, 4 (2005), 316–344.

[39] Jennis Meyer-Spradow, Timo Ropinski, Jrg Mensmann, and K-
laus Hinrichs. 2009. Voreen: A Rapid-Prototyping Environment
for Ray-Casting-Based Volume Visualizations. IEEE Computer
Graphics and Applications 29, 6 (2009), 6–13.

[40] Rebecca Morgan, Georg Grossmann, Michael Schrefl, Markus S-
tumptner, and Timothy Payne. 2018. VizDSL: a visual DSL for
interactive information visualization. In International Confer-
ence on Advanced Information Systems Engineering. Springer,
Springer, Tallinn, Estonia, 440–455.

[41] John Plate, Thorsten Holtkaemper, and Bernd Froehlich. 2007.
A Flexible Multi-Volume Shader Framework for Arbitrarily In-
tersecting Multi-Resolution Datasets. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007), 1584–1591.

[42] Peter Rautek, Stefan Bruckner, Eduard Grller, and Markus Had-
wiger. 2014. ViSlang: A System for Interpreted Domain-Specific
Languages for Scientific Visualization. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (2014), 2388–2396.

[43] Lukas Renggli and Tudor Gı̂rba. 2009. Why Smalltalk wins the
host languages shootout. In Proceedings of the International
Workshop on Smalltalk Technologies. ACM, Brest, France, 107–
113.

[44] Christian Rieder, Stephan Palmer, Florian Link, and Horst K.
Hahn. 2011. A Shader Framework for Rapid Prototyping of GPU-
Based Volume Rendering. Computer Graphics Forum (Euro-
Vis’11) 30, 3 (2011), 1031–1040.

[45] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat,
and Jeffrey Heer. 2017. Vega-Lite: A Grammar of Interactive
Graphics. IEEE Transactions on Visualization and Computer
Graphics 23, 1 (2017), 341–350.

[46] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey
Heer. 2016. Reactive Vega: A Streaming Dataflow Architecture
for Declarative Interactive Visualization. IEEE Transactions on
Visualization and Computer Graphics 22, 1 (2016), 659–668.

[47] Hans-Jörg Schulz, Thomas Nocke, Magnus Heitzler, and Heidrun
Schumann. 2013. A Design Space of Visualization Tasks. IEEE
Transactions on Visualization and Computer Graphics 19, 12
(2013), 2366–2375.

[48] Liming Shen, Xueyi Chen, Richen Liu, Hailong Wang, and Gen-
lin Ji. 2020. Domain-Specific Language Techniques for Visual
Computing: A Comprehensive Study. Archives of Computation-
al Methods in Engineering 28, Accepted (2020), 1–22.

[49] Anthony Sherbondy, David Akers, Rachel Mackenzie, Robert
Dougherty, and Brian Wandell. 2005. Exploring connectivity of
the brain’s white matter with dynamic queries. IEEE Trans-
actions on Visualization and Computer Graphics 11, 4 (2005),
419–430.

[50] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. 2006.
Model-driven software development: technology, engineering,
management. Wiley, New Jersey, USA.

[51] Jo Wood, Jason Dykes, and Aidan Slingsby. 2010. Visualisation
of Origins, Destinations and Flows with OD Maps. The Carto-
graphic Journal 47, 2 (2010), 117–129.

[52] Yalong Yang, Tim Dwyer, Bernhard Jenny, Kim Marriott,
Maxime Cordeil, and Haohui Chen. 2019. Origin-Destination
Flow Maps in Immersive Environments. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019), 693–703.

